Rings, Polymers \& Analysis Spectroscopy MARK SCHEME

1. (a) infrared - $\mathbf{1}$ mark only
shows (very broad) peak between $2500-3300\left(\mathrm{~cm}^{-1}\right)$
(due to O-H bond) \checkmark
ALLOW (very broad) peak around $3000\left(\mathrm{~cm}^{-1}\right)$ OR any stated value between 2500 and $3300\left(\mathrm{~cm}^{-1}\right)$ for $\mathrm{O}-\mathrm{H}$
DO NOT ALLOW peak in range 3200-3550 (cm^{-1})
IGNORE any reference to $\mathrm{C}=\mathrm{O}$ or $\mathrm{C}-\mathrm{O}$ as both are also present in an ester $\mathbf{O R}$ to fingerprint region
${ }^{13}$ C NMR - 2 marks
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{COOH}$ has 4 peaks (due to 4 different C environments) \checkmark $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$ has 3 peaks (due to 3 different C environments)

ALLOW ${ }^{\text {} 13} \mathrm{C}$ NMR detects the number of/different C environments' for $1 \checkmark$, suitable example for the 2nd mark 3
(b) splitting pattern
explains any two in terms of ' $n+1$ rule' for two marks $\checkmark \checkmark$
Explains any one peak for 1 mark \checkmark
1 mark for correct ester
if two splitting patterns are correctly analysed ignore the third

- singlet therefore adjacent C (if any) has no Hs

ALLOW singlet because next or bonded to an O

- multiplet OR split into 7 therefore adjacent Cs have lots of/6 Hs ALLOW multiplet/heptet because next to $2 \mathrm{CH}_{3} \mathrm{~S}$
- doublet therefore adjacent C is bonded to 1 H

ALLOW doublet because next to a CH
must spell one of multiplet / heptet, singlet, doublet correctly
$\max _{\mathbf{~}} \mathbf{2} \mathbf{~ m a r k s}$

chemical shifts

two marks if any two absorptions are identified correctly
one mark if any one absorption is identified correctly
ALLOW tolerance on δ values; 3.6-3.8, 2.6-2.8 and 1.1-1.3 (ppm)

- peak ~ 3.7 (ppm) - bonded to an O
- peak ~ 2.7 (ppm) - indicates it is next to a $C=O$
- peak ~ 1.2 (ppm) - bonded to other Cs OR part of a chain
max $=2$ marks
ALLOW any two gets 2 marks, any one scores 1 mark

3.7 (ppm)

2.7 (ppm)

1.2 (ppm)

ALLOW peaks labelled on the spectrum
ALLOW singlet must be bonded to O, multiplet to $C=O$ and doublet to CH or R for both chemical shift marks if two chemical shifts are correctly identified IGNORE the third
compound identified as $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOCH}_{3}$
compound identified as $\mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}$
2. (i) the peak is due to the $\mathrm{CH}_{3} \mathrm{CO}$ - group (1)
not split, so next to a C with no protons / has no neighbouring proton / δ value is in the range $2.0-2.9$ (1)
(ii) adjacent to a C with three protons / to a CH_{3} (1)

3. IR

Similarities

Any 2 of the following three peaks (must give the quoted range)
peak corresponding to OH in all three $\left(3230-3550 \mathrm{~cm}^{-1}\right)$ (1)
peak corresponding to NH in all three $\left(3100-3500 \mathrm{~cm}^{-1}\right)(\mathbf{1})$
peak corresponding to CO in all three $\left(1000-1300 \mathrm{~cm}^{-1}\right) \mathbf{(1)} 2$ max

Differences

only shown in the fingerprint region (1) 1

Mass Spec

similarities

$\mathrm{M}_{\mathrm{r}}(75)$ / base peak will be the same (1) 1
M + 1 peak same (1) 1

Differences

Fragmentation pattern may show differences between isomers
/ specific example, eg $\mathrm{CH}_{3}+$ at m/e 15 (1)

QWC

Use of any two terms from: functional group / amino group /
hydroxy group / fingerprint / fragmentation / fragment ion(s) /
base peak or molecular ion / M + 1 peak / m/e
4. (a)

propanoate and ester group (1) 2-methyl propyl (1)
(b) propanoic acid (1)
(2-)methylpropan-1-ol (1)
heat (1)
conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1)
(allow ecf from part (a) for the equation)

(c) mass spectrum / spectrometry (1)
molecular ion peak /
m / e or mass of the peak furthest right (1) AW 2
5. $\boldsymbol{\delta}$ value / chemical shift gives the 'type' of proton /
chemical environment (1) AW
example quoted from data sheet (1)
number of peaks gives the number of different types of proton /
chemical environments (1)
relative / ratio of (1)
peak areas gives the number of protons (of each type) (1)
splitting gives number of neighbouring / adjacent protons (1)
description of $n+1$ rule / example of doublet, triplet or quadruplet showing 1, 2 and 3 protons neighbouring (carbon) atom (1) AW
$\mathbf{D}_{\mathbf{2}} \mathbf{O}$ can be used to identify OH groups (1)
ANY 7 marks out of 8
Quality of written communication mark for correct use and organisation of at least two of the following technical terms: proton, environment, singlet (doublet etc.), ppm, equivalent, chemical shift, splitting, labile, integration
6. (a) (i) alkene (1) ester (1)
allow "C=C double bond"
i.

(1)
ii. $\quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}(\mathbf{1})$
(b) same structural formula/order of bonds, different spacial arrangement AW (1)
description or diagram showing \mathbf{B} and how it is different from $\mathbf{A}(1)$
(c)

(1)
(1)
(d) (i) peak at $1680-1750\left(\mathrm{~cm}^{-1}\right)$ due to $\mathrm{C}=\mathrm{O}$ (1) peak at 1000-1300 $\left(\mathrm{cm}^{-1}\right)$ due to $\mathrm{C}-\mathrm{O} /(\mathbf{1})$
(ii) 2500-3300 / 3230-3550 $\left(\mathrm{cm}^{-1}\right)$ (1)

O-H /carboxylic acid/alcohol is not present in A (1)
allow 1 mark for $\sim 500-1500\left(\mathrm{~cm}^{-1}\right)$ which is a unique fingerprint region etc
7. (a) low boiling point / easily turns to a gas AW (1) 1
(b) 2,4-dinitrophenylhydrozine / 2,4-DNP(H) / Brady's reagent (1) purify/recrystallise the product/solid (derivative) (1) measure the melting point /mp (1) compare the result with data book/known values (1)
8. (a) (i) Molecular ion peak: the peak caused by the unfragmented molecule / the peak with the highest m/e value / the peak that tells you the Mr.

Base peak : peak with the greatest (relative) intensity / peak representing most stable/abundant fragment NOT the tallest / biggest / most common peak
(ii) The molecular ion is too unstable / will have been completely fragmented / may not carry a positive charge NOT peak too small to be seen / too little ion present

(b) IR spectrum:

$\mathrm{C}=\mathrm{O}$ peak at approx $1650 \mathrm{~cm}^{-1}\left(1680-1750 \mathrm{~cm}^{-1}\right) \quad 1$
broad O-H peak at value(s) between 2500-3300 $\mathrm{cm}^{-1} \quad 1$
ignore any references to C-O peak at $1000-1300 \mathrm{~cm}^{-1}$
mass spectrum:
Fragment with $\mathrm{m} / \mathrm{e}=31$ is $\mathrm{CH}_{2} \mathrm{OH}^{+} \quad 1$
Fragment at $\mathrm{m} / \mathrm{e}=45$ is $\mathrm{COOH}^{+} \quad 1$
penalise missing + sign once only
(c) 2 proton peak at $\delta=3.3-4.3-$ singlet $\left(-\mathrm{CH}_{2}-\right) \quad 1$

1 proton peak at $\delta=3.5-5.5-$ singlet $(-\mathrm{OH}) \quad 1$
1 proton peak at $\delta=11.0-11.7-$ singlet $(-\mathrm{COOH}) \quad 1$
(ranges of chemical shift (δ) values taken from data sheet)

- penalise each error once only
- ignore peak areas/heights unless incorrectly labelled

Labelled diagram of the structure of G proposed by the student may be used to provide evidence for the positioning of peaks on the sketched spectrum.
Both OH and COOH protons disappear on shaking with $\mathrm{D}_{2} \mathrm{O}$ 1
9. (i)

splitting:
doublet (1)
quartet (1)
ignore any other peaks
position:
doublet peak is at ~ 1.4 and
quartet peak is at ~ 4.3 (1)
allow ecf from one incorrect splitting pattern

areas:

1 and 3 on the correct peaks
(or either way round as ecf if any errors above) (1)
(ii) 4 (1)

OH/labile protons now visible AW (1) 2
[6]
10. (a) (i) Find the m / e of (1)
... the peak furthest to the right / with highest m / e or mass (1)
allow attempts to cater for the ${ }^{13}$ C peak
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ /empirical formula has $\mathrm{M}_{r}=59$ (1)
so M_{r} of molecular formula is $118 / 59=2$ /twice the empirical formula (1) 2
(b) (i) $\quad \mathrm{OH}$ peak disappears (with $\mathrm{D}_{2} \mathrm{O} /$ on the second spectrum) 1
(ii) no of peaks: one (1)
splitting: none (1)

$$
\begin{aligned}
& \text { all four protons equivalent / in the same environment (1) } \\
& \text { if the wrong structure is chosen allow ecf for: } \\
& \text { two peaks (1), } \\
& \text { splitting (1)(1) (as last } 2 \text { marks for part (ii)) }
\end{aligned}
$$

11. (i) $\quad \mathbf{A} \mathrm{C}_{3} \mathrm{H}_{6} \mathbf{(1)} \quad \mathbf{B C} \mathrm{C}_{4} \mathrm{H}_{8} \mathbf{(1)} 2$
(ii) $\quad \mathbf{A ~ C H} 33 \mathrm{CH}=\mathrm{CH}_{2}$ (or displayed) ('sticks' penalised once) 1
(iii) $\mathrm{C}_{3} \mathrm{H}_{5}^{+}(\mathbf{1})$ for formula and (1) for charge 2
